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Abstract

The curvature effects of interlayer van der Waals (vdW) forces on axially compressed buckling of a double-walled
carbon nanotube (DWNT) of diameter down to 0.7 nm are studied. Unlike most existing models which assume that
the interlayer vdW pressure at a point between the inner and outer tubes depends merely on the change of the interlayer
spacing at that point, the present model considers the dependence of the interlayer vdW pressure on the change of the
curvatures of the inner and outer tubes at that point. A simple expression is derived for the curvature-dependence of the
interlayer vdW pressure in which the curvature coefficient is determined. Based on this model, an explicit formula is
obtained for the axial buckling strain. It is shown that neglecting the curvature effect alone leads to an under-estimate
of the critical buckling strain with a relative error up to —7%, while taking the average radius of two tubes as the rep-
resentative radius and the curvature effect leads to an over-estimate of the critical buckling strain with a relative error up
to 20% when the inner radius downs to 0.35 nm. Therefore, the curvature effects play a significant role in axially com-
pressed buckling problems only for DWNTs of very small radii. In addition, our results show that the effect of the vdW
interaction pressure prior to buckling of DWNTSs under pure axial stress is small enough and can be negligible whether
the vdW interaction curvature effects are neglected or not.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Carbon nanotubes (CNTs) are the most promising new material and expected to play a pivotal role in
nanotechnology (Ball, 2001; Baughman et al., 2002). Mechanical behavior of CNTs, including axially
compressed elastic buckling, has been one of recent topics of considerable interest (Treacy et al., 1996;
Yakobson et al., 1996; Wong et al., 1997; Falvo et al., 1997, Poncharal et al., 1999; Ru, 2000a,b,
2001a,b). Elastic shell models have been effectively used to study mechanical deformation of CNTs (Qian
et al., 2002; Ru, 2004), especially axially compressed buckling of CNTs (Yakobson et al., 1996; Ru, 2000a,
2001b). Previous work has shown that critical loading and the associated buckling mode predicted by sim-
ple isotropic elastic shell models are generally in reasonable agreement with available experiments and
molecular dynamics simulations of single-walled nanotubes (SWNTSs) (Ru, 2000a; Wang et al., 2003).
On the other hand, axially compressed buckling of large-diameter multi-walled nanotubes (MWNTSs)
has been studied based on a multiple shell model (Ru, 2000b, 2001a,b; Wang et al., 2003), although a
comparison is still not available due to the lack of relevant experimental results or molecular dynamics
simulations for axially compressed MWNTs. Furthermore, Wang et al. (2003) have recently studied elas-
tic buckling of individual MWNTs under external radial pressure based on the multiple-elastic shell model
(Ru, 2000b, 2001a,b). Wang et al.’s results showed that the multiple-shell model is in reasonably good
agreement with the experimental results of Tang et al. (2000) for a specific group of MWNTs of about
20 layers, which suggests that the multiple-elastic shell model can be used to study buckling behavior
of MWNTs.

So far, almost all previous work for axial buckling of MWNTs has been limited to CNTs of larger radii
for which the curvature effects of the interlayer vdW forces and the difference of the inner and outer radii of
DWNTs are neglected (Ru, 2001a,b; Feng et al., 2004). The curvature effects of the interlayer vdW forces
on axial buckling of small-diameter MWNTs is an interesting tropic for further work. By analyzing the high
resolution transmission electron microscopy images, Kiang et al. (1998) have shown that the interlayer
equilibrium spacing between adjacent layers of MWNTs increases with decreasing radii. They have attri-
buted this increase in the interlayer spacing to the high curvature of MWNTs of small radii, resulting in
a repulsive vdW force due to the decreased radii of the nanotube shells.

In order to study the curvature effects, a more accurate model is required for the interlayer vdW forces
to account for the curvature-dependence of the interlayer vdW forces between two adjacent deformed
tubes. Such a model will be suggested in the present paper. Here, it should be stated that an attempt
has been made by Feng et al. (2004) to study the curvature effects of the interlayer vdW forces. Unlike
Feng et al. (2004) where an assumed model with an undetermined curvature coefficient was used, the
model developed in the present paper is based on a theoretical derivation. In particular, based on the data
of Kiang et al. (1998), the present model gives a reliable estimate of the curvature coefficient. In addition,
almost all previous work on axial buckling of DWNTs have assumed that the inner and outer radii of
DWNTs are much larger than the interlayer spacing (0.34 nm) (Feng et al., 2004), and thus the difference
between the inner and outer radii is negligible compared to the radii. This simplification is not true for
small-diameter DWNTs (such as DWNTs of the inner radius about 1 nm or less) (Wang et al., 2004).
Therefore, a more detailed study is needed to examine axial buckling of small-diameter DWNTs. In par-
ticular, it is known that the curvature effects are likely relevant for MWNTs of smaller radii (Kiang et al.,
1998).

The present paper studies axially compressed buckling of DWNTs with smaller radii. Based on a theo-
retical model for the curvature dependence of the interlayer vdW forces, an explicit formula is derived for
the axial buckling strain. The axial buckling strain is calculated for various radii, with detailed comparison
to the results which neglect the difference of the two radii of the inner and outer tubes or the curvature
effects of the interlayer vdW forces. The relative error (defined by (approximate solution-exact solution)/
exact solution) due to these approximate simplifications is calculated.
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2. Basic equations

The elastic-shell models have been effectively applied to SWNTs and multi-walled carbon nanotubes
(MWNTs) (Yakobson et al., 1996; Falvo et al., 1997; Ru, 2000a,b, 2001a,b). For MWNTs, a multiple-
elastic shell model has been developed by Ru (2000b, 2001a,b), which assumes that each of the concentric
nanotubes is described as an individual elastic shell, and the interlayer friction is negligible between any two
adjacent tubes. In the absence of any tangential external force, elastic buckling of a cylindrical shell of
radius R is governed by (Timoshenko and Gere, 1961; Calladine, 1983; Ru, 2000b, 2001a,b)

o Fy & Et O*w

@V“W-FR—?@V“W—P@, (1)
where x and 0 are axial coordinate and circumferential angular coordinate, respectively, w is the radial
(inward) deflection due to buckling, p(x,0) is the net normal (inward) pressure due to buckling, F, and
Fy are the uniform axial and circumferential membrane forces prior to buckling, D,y and ¢ are the effective
bending stiffness and thickness of the shell, and E is Young’s modulus. Here, the effective bending stiffness
D, can be independent of the thickness 7, and thus not necessarily proportional to 7°.

The present work studies elastic buckling of a DWNT under axial compression, as shown in Fig. 1.
Applying Eq. (1) to each of the two concentric tubes of a DWNT, elastic buckling of a DWNT is governed
by the two coupled equations

DoVw = V'p(x,0) + F,

az F(l) 62 Et, 64W1
D\Viwi = Vipp, + Fil)@v?wl +R_0f @V?Wl Rt
(2)
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Fig. 1. Elastic model for a double-walled nanotube under axial compression.
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where wi(k = 1,2) is the (inward) deflection of the kth tube, D, and #; are the bending stiffness and thick-
ness of the kth tube, the subscripts 1, 2 denote the quantities of the inner tube and outer tube, respectively,
Eis Young’s modulus of CNTs, Ry is the radius of the kth tube, F’ §k> and F f,k) (k =1,2) are the uniform axial
and circumferential membrane forces of the kth tube prior to buckling, and

¥ 19
Vie_—+—— (k=1,2). 3
k Ox2 +RI% 602 ( ’ ) ( )
In addition, p;, is the (inward) pressure on inner tube due to outer tube, p,; is the (inward) pressure on
outer tube due inner tube, and they are related by
R,
P = _]szlr 4)

Since the two tubes are originally concentric and the initial interlayer spacing is equal or very close to the
equilibrium spacing, the initial vdW interaction pressure between two tubes of undeformed DWNTs is neg-
ligible. When the axial loading is applied, however, the interlayer spacing changes which causes the inter-
layer vdW forces. Here, since infinitesimal buckling of DWNT is studied, the vdW interaction pressure (per
unit area) at any point between the two tubes can be assumed to depend linearly on the change of the inter-

layer spacing and the change of the curvatures of the inner and outer tubes at that point. It is well known
Wi

that the change of the curvature of the kth tube due to the deflection wy is — + V,fwk, thus the interlayer
vdW pressure due to the deflections is given by Ry
w: w
Pia(x,0) = clwr —wi] + ¢ {R_i + V%m] — ¢ {R—; + Vfwl] : (5)
2 1

Here the vdW interaction coefficient ¢ can be estimated as the second derivative of the energy-interlayer
spacing relation of DWNTs as (Wang et al., 2003, 2004)

. 320 x erg/cm?
© 01647

where d is the C-C bond length. On the other hand, the vdW interaction curvature coefficient ¢, can be
estimated by studying the dependence of the interlayer vdW pressure on the curvature radii. According to
Kiang et al. (1998), the interlayer equilibrium spacing between adjacent layers of MWNTSs increases with
decreasing radii. For example, the interlayer equilibrium spacing of two concentric tubes is about 0.4 nm
when the radius of the inner tube downs to 0.35 nm (Kiang et al., 1998) (Fig. 2(a)). Thus, when two flat
graphite sheets (with the initial equilibrium spacing 0.34 nm (Treacy et al., 1996; Ru, 2000b)) (Fig. 2(b))
are rolled into a DWNT of the inner radius R; and the outer radius R,, the interlayer equilibrium spa-
cing increase by Ad and the difference of two curvature changes by (1/R; — 1/R,). Because the interlayer
vdW pressure remains zero at the new interlayer equilibrium spacing, the attractive vdW forces due to
increasing spacing is compensated by the impulsive vdW forces due to increasing curvatures. Thus, we
have

1 1
p:cAé—l—cl(]Tl—R—z):O, (7)

where Ao = 0.4 nm-0.34 nm = 0.06 nm, R; =0.35nm, R, =0.35nm + 0.4 nm = 0.75 nm, then it is esti-
mated that

¢ = —c(0.2 nm)* = —4 kg/s>. (8)

Substitution of (5) into (2) leads to two coupled linear equations for deflection w; and w,. The condition for
existence of a non-zero solution determines buckling strain of a DWNT under axial stress.

(d =142 x10"%cm), (6)



5430 H. Qian et al. | International Journal of Solids and Structures 42 (2005) 54265440

equilibrium
spacing 0.4nm

(a)

equilibrium spacing 0.34nm

(b)

Fig. 2. The interlayer equilibrium spacing of a double-walled nanotube: (a) when the radius of the inner tube is 0.35 nm (Kiang et al.,
1998) and (b) when the radii of the two tubes are infinite.

3. Pre-buckling analysis

Constrains for the ends of cylindrical shell are usually ignored in pre-buckling analysis (Timoshenko and
Gere, 1961; Calladine, 1983). As a result, under uniform axial stress, the axial and circumferential mem-
brane force F' )(Ck) and F g‘) (k = 1,2) prior to buckling are some constants. The equilibrium conditions prior
to buckling give (Wang et al., 2003)

e R F
O'((}k) :%: _p_l;kk’ O')(Ck) = = O axial (k: 1,2)3 (9)

where ) ande®) are the pre-buckling axial and circumferential membrane stresses in the kth tube, py is the
net (inward) pressure to the kth tube prior to buckling, and 7,,;, is the axial stress applied to the DWNT.
Here

Pr=Pis Pr=Pau- (10)
Note that (Hooke’s relation) (Wang et al., 2003)

AR, 1
k k k

g<0>:R—k:E(ag)_m<k>) (k=1,2), (11)
where AR, is the increase of the radius of the kth tube prior to buckling, and v is Poisson’s ratio. Prior to
buckling, the deflection of the kth tube is w, = —ARy, and prior to buckling, we have

Viwy =0 (k=1,2), (12)

Combining Egs. (4), (5), (9), (10), (12) with Eq. (11) gives two conditions which allow us to determine
AR, (k=1,2)
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‘ R ! R, v
(e i) () ) wan (o) (5) o=
Cl Rl Rl 1
(e )] (e 32 4] e

Once AR, (k =1,2) are known, all membrane forces and pressure distribution prior to buckling can be
determined.

(13)

4. Buckling analysis

Because the critical axial strain is usually not sensitive to the boundary conditions, we consider the
hinged nanotubes. The ends of both tubes of DWNTSs are simply supported. Thus, the buckling mode is
given by

— Asin ™™ cos no,
L
(m=1)
= Bsin? cosnd, (14)

where A and B are two real constants, L is the length of the DWNT, m is the axial half wavenumber, and n

is the circumferential wavenumber. For the DWNT, the bending stiffness is same for two tubes, i.e.,

Dy = D, = D, and the thickness is constant, i.e., t{; = t, = t. Thus, Eq. (9) gives Ff(l) = F§2> = F.. Introduc-

ing (14), together with the known net pressure distribution (see Section 3) and Egs. (4) and (5) into Eq. (2)
Et (1)

gives
DJ4+< )Jz— Tt ( ) +F (@)zwzF—n A— Kc+ﬂ)J2—c1J2J2}B—O
1 14 x 1 1 - Y
R R2 L L R} R

R1 ) C| 4 R1 ) R1 3 Et ) mm\ 2 2F
il Y — e |4+ DS S 7 (—) JF( ) J 2A\p_y,
TR K +R%> “ 1} +{ Tk +R2 TR TR\ TR T

2

where

mm\ 2 n\’ mm\ 2 n\’
Ji = (T) + (R_]> , Jo= (T) + (R_2> . (16)
Evidently, axial buckling of the DWNT is prohibited if there is a zero solution of the Eq. (15).

Accordingly, the critical axial strain can be determined by the existence condition for a non-zero solution
of Eq. (15), which leads to a quadratic equation for membrane force F,

FP+XF,+Y =0, (17)

where

DJ2 €1 J +Et (mn)4 1 +F§,l) )
—c (=) 5 +—5n
TR) TR 5T R

a\ R Et ymm4 1  FY
D2 o) _ & e i L 1
J R2<C+R§) R2c1J2+R§ 7 J§+R§n , (18)
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If all terms proportional to (R; — R»)/R; are small and negligible, then J; ~ J, and

[(HZ—%) —clJz] [(H}Z—%) —clJl} ~ Kc—i—;—%) —clJz]z > 0. (21)

Generally, because ¢; = —¢(0.2 nm)? (see Eq. (8)) and ¢ + >0 (k=1,2) for R>0.2 nm, X’ —4Yis
positive. The axial buckling membrane force F, is determined f)y the smallest root of Eq. (17) which gives

X —VX?—4y
—

Thus the axial buckling strain is determined by

F. 1 (LY Et mmy+ 1 F)
p=— L= DJ} Ji S+
TTE 2Ez(mn> '+(+R> a +R<L)12+R'ﬂ

Ry Et imm4 1 F@ N
D. —ciJr+— 0_n?
JZ <6+RZ> qu ~+Ri< ) JZ+ I n

AN R, 1o R il 11 O F2\]?
——| (=) | =B) +e(1-L) R (- Jy =10y ) +Et === |+t | -4 4
s () Joi-s+5(1-8) e i) - () ) () (-5

p (22)

L\R, c cl
(&3l
(23)
This determines a relationship between the axial buckling strain and the wave-numbers (m,n). Thus, the
critical axial strain for axially compressed buckling can be obtained by minimizing the right-hand side of
Eq. (23) with respect to the integers m and n.
If we consider the vdW interaction curvature coefficient ¢; =0 and neglect all terms proportional to
(R; — Ry)/Ry, Eq. (23) becomes Eq. (19) of Ru (2000b). On the other hand, if we assume all terms propor-
tional to (R; — R»)/R; are small and can be neglected, Eq. (23) becomes

F. 1/LY\ c1 Et /mm4 1 1/ L\’
_ZX—_ (=) |DS? — | —aJ =l ==
Et Et (mn) [ +<C+R2> “ +R2<L) JZ} Et (mrc)
2p\ 2 2
X\/<’7R20) + [(C _|_;12> —clJ] , (24)
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where J = (%% )+ ( )>. It is similar to Eq. (24) in Feng et al. (2004) with a minor difference which is caused
by the present more accurate curvature expression (5) compared to Feng et al. (2004). Moreover, if the
interlayer vdW forces prior to buckling is neglected, then Eq. (24) reduces to the classical result for single-
layer elastic shell

F, 1/LY Et mm\* 1
——Z=—(—=) |DS? —(—)—, 25
Et B@J{ 2 \T ﬁ] (23)
where J = (%% )’ + (% ). In this case, the critical axial strain for the double-walled nanotube is approximated
equal to that for a single-walled nanotube under otherwise identical condition (Timoshenko and Gere,

1961).

In what follows, detailed numerical results are shown to examine the curvature effects on axial buckling
of smaller radii DWNTs. Throughout the paper, we assume that L = 12R, or L = 20R; (the outer radius),

v=0.3 (Falvo et al., 1997), D =0.85¢V, and Et = 360 J/m?> (Yakobson et al., 1996; Ru, 2000a), and the
interlayer spacing between the inner and outer tubes of DWNTs is 0.34 nm.

4.1. The relative errors due to neglecting the vdW interaction pressure prior to buckling

Since both nested tubes are originally concentric and the initial interlayer spacing is equal to or very close
to the equilibrium spacing, the initial vdW interaction pressure between two tubes of undeformed DWNTs
is negligible. When the axial loading is applied, however, the interlayer spacing changes, which cause the
vdW interaction pressure. If the interaction pressure prior to buckling is considered, the critical axial buck-
ling strain can be calculated exactly using an iterative method. But if the vdW interaction pressure prior to
buckling is neglected, the critical axial buckling strain can be calculated based on Eq. (23) directly by taking
FV=FP = o.

As shown in Fig. 3, the results show that the relative errors of the critical strain due to neglecting the
vdW interaction pressure prior to buckling are limited to 0.5%. Based on this result, it is concluded that
the vdW interaction pressure prior to buckling for DWNTs under pure axial stress is negligible. So, the
axial buckling strain will be calculated without considering the vdW interaction pressure prior to buckling
in what follows.

0.6 T T T T T T T
0.5 F X 7
o e—o——o =0, L[=12R,
SIS ®xx-x  C=0, [=20R, 7
g 0.3 — o— ;= -4kg/s? L=12R,
g ' c,= -4kg/sz, L=20R,
=
T 02f
o
2 01l
'_
0 =
-0.1

0O 05 1 15 2 25 3 35 4
The radius of the inner tube (nm)

Fig. 3. The relative errors of the critical strain due to neglecting the van der Waals interaction pressure prior to buckling.
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4.2. The relative errors due to neglecting the difference of the radii of the inner and the outer tubes when
c; = 0

The axial buckling strain is calculated for various radii, with detailed comparison to the results which do
not consider the difference of the radii of the inner and the outer tubes. The relative errors of the critical
strain due to neglecting the difference of the two radii can be calculated when ¢; = 0, as shown in Fig. 4. Here,
when the difference of the radii of the inner and the outer tube is neglected, we take the average radius of two
tubes as the representative radius. It is seen from Fig. 4 that the relative error of the critical strain, defined by
the solutions neglecting and not neglecting the difference of two radii (both with ¢; = 0), is 29%, 5% or 0.3%
when the radius of the inner tube is 0.35 nm, 0.95 nm or 2 nm, respectively. Thus, neglecting the difference of
the inner and outer radii when ¢; = 0 leads to an over-estimate of the critical axial buckling strain if the aver-
age radius of the inner and outer radii is used as the representative radius of DWNTs. In particular, this rel-
ative error is negligible (less than 1%) when the inner radius of DWNTs is larger than 1.5 nm.

On the other hand, the present model shows that if the outer radius, instead of the average radius, is used
as the representative radius of DWNTs, neglecting the difference of the inner and outer radii will lead to an
under-estimate of the critical axial buckling strain with a relative error —7% when the radius of the inner
tube is 2 nm. This can explain the inconsistency between the present conclusion and those of He et al. (2005)
where they used the outer radius as the representative radius of DWNTs and found that neglecting the dif-
ference of two radii leads to an under-estimate of the critical strain. In particular, these results are consis-
tent with Wang et al. (2003) where it is shown that the critical axial buckling strain of a MWNT is bounded
from above and below by the critical strains of the innermost and the outermost SWNTs.

4.3. The dependence of the axial buckling strain on (m,n) when c¢; =0

Let us examine elastic buckling of DWNTs under pure axial stress when the vdW interaction curvature
coefficient ¢ is neglected. The dependence of the axial buckling strain on the wavenumbers (2, n) is shown
in Fig. 5(a) and (b) for small or large inner radius. An interesting general result is that, similar to the clas-
sical results of axially compressed buckling of elastic thin shells (Timoshenko and Gere, 1961; Calladine,
1983), the wavenumbers corresponding to the minimum axial buckling strain are not unique. More pre-
cisely, there always is more than one combination of (m,n) which corresponds to the same minimum
(critical) axial buckling strain. As a result, the wavenumbers of the buckling modes of DWNTSs under pure

30

25

20

15

The relative errors (%)

1
0 05 1 15 2 25 3 35 4
The radius of the inner tube (hm)

Fig. 4. The relative errors of the critical strain due to neglecting the difference of the radii of the inner and the outer tubes when ¢; = 0.
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Fig. 5. The dependence of axial strain on the wavenumbers (/,7) when the vdW interaction curvature coefficient ¢, is neglected: (a)
when the radius of the inner tube is 0.35 nm and (b) when the radius of the inner tube is 3 nm.

axial stress cannot be determined uniquely when the vdW interaction curvature coefficient ¢; is neglected.
Similar results are obtained for MNWTs (Wang et al., 2003).

4.4. The relative errors due to neglecting the vdW interaction curvature coefficient ¢; when all terms
proportional to (R; — R;)IR; are not neglected

The previous models (Ru, 2000b, 2001a,b), which neglect the vdW interaction curvature coefficient ¢,
assume that the interlayer vdW pressure at any point between the inner and outer tubes depends merely
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on the change of the interlayer spacing at that point. Instead, the present model also considers the depen-
dence of the interlayer vdW pressure on the change of the curvatures of the inner and outer tubes at that
point. The relative errors of the critical buckling strain due to neglecting the vdW interaction curvature
coefficient ¢; alone when all terms proportional to (R; — R,)/R; are retained is shown in Fig. 6. It is seen
from Fig. 6 that the relative error of the critical buckling strain, defined by the solutions neglecting and not
neglecting the curvature coefficient ¢; is —7%, —2.7% or —0.13% when the radius of the inner tube is
0.35 nm, 0.95 nm or 1.7 nm, respectively. It is seen from Fig. 6 that the critical axial strain without the cur-
vature effects (¢; = 0) is lower than that with the curvature effects (¢; # 0). This can be explained by the fact
that the vdW interaction curvature coefficient ¢; increases the interlayer vdW energy and thus promotes the
critical strain for buckling. And Fig. 6 also shows that the curvature effects on the critical axial strain are
more significant for DWNTs of smaller radii, because the buckling mode of DWNTSs of smaller radii has

The relative errors (%)

-8 I I I I I I I
0 05 1 15 2 2.5 3 3.5 4

The radius of the inner tube (nm)

Fig. 6. The relative errors of the critical strain due to neglecting the vdW interaction curvature coefficient ¢, when all terms
proportional to (R; — R,)/R, are not neglected.

The relative errors (%)

0 05 1 15 25 3 35 4
The radius of the inner tube

Fig. 7. The relative errors of the critical strain due to neglecting the vdW interaction curvature coefficient ¢, and all terms proportional
to (R] — Rz)/R]
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shorter wave-lengths. The result agrees with Feng et al. (2004) where it is shown that the curvature effects
play a more significant role in elastic buckling of DWNTs of smaller radii.

4.5. The relative errors due to neglecting both the vdW interaction curvature coefficient c; and all terms
proportional to (R; — R,)IR;

Prior related works (Ru, 2000b, 2001a; Feng et al., 2004) study the critical buckling strain of DWNTs
when the all terms proportional to (R; — R,)/R, are neglected. The critical axial strain is given by Eq. (25)
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Fig. 8. The dependence of axial strain on the wavenumbers (m,n) when the vdW interaction curvature coefficient ¢, is not neglected: (a)
when the radius of the inner tube is 0.35 nm and (b) when the radius of the inner tube is 3 nm.
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when both the vdW interaction curvature coefficient ¢; and all terms proportional to (R; — R,)/R; are ne-
glected. Here, the critical axial strain is calculated for various radii, with comparison to the results which
neglect both the difference of two radii of the inner and outer tubes and the vdW interaction curvature coef-
ficient ¢;. The relative errors of the critical strain, defined by the solutions neglecting and not neglecting the
curvature coefficient ¢ ; and all terms proportional to (R; — R»)/R,, are shown in Fig. 7. It is seen from
Fig. 7 that the relative error of the critical strain is 19.7%, 2.4% or 0.26% when the radius of the inner tube
is 0.35 nm, 0.95 nm or 2 nm, respectively. As shown above, neglecting all terms proportional to (R, — R,)/
R leads to an over-estimate of the critical strain (Fig. 4), and neglecting the vdW curvature coefficient ¢,
leads to an under-estimate of the critical strain (Fig. 6). Since the relative error of the critical strain due to
neglecting all terms proportional to (R; — R,)/R; is larger than those due to neglecting the vdW curvature
coefficient ¢, neglecting both the vdW curvature coefficient ¢; and all terms proportional to (R; — R,)/R;
leads to an over-estimate of the critical strain, as shown in Fig. 7.

4.6. The dependence of the axial buckling strain on (m,n) when the vdW interaction curvature coefficient
¢; is not neglected

Let us now examine elastic buckling of DWNTs under pure axial stress when the vdW interaction cur-
vature coefficient ¢; is not neglected. The dependence of axial buckling strain on the wavenumbers (m,n) is
shown in Fig. §(a) and (b). Similar to the axial buckling strain when the vdW interaction curvature
coefficient ¢; is neglected, the buckling modes associated with the minimum axial strain are not determined
uniquely for DWNTSs whether the inner radius is small or large.

4.7. The dependence of the critical buckling strain on the value of the coefficient c;

Finally, let us examine the effect of the value of the curvature coefficient ¢; on the critical buckling strain.
To this end, let us consider the coefficient ¢; around ¢; = —¢(0.2 nm)? = —4 kg/s. The critical buckling

6 T T T T T T T

The relative errors (%)
o
T

_6 I I I I I I I
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The radius of the inner tube (nm)

Fig. 9. The dependence of the critical buckling strain on the value of the vdW interaction curvature coefficient c;.
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strain for different vdW interaction curvature coefficient ¢, is compared to the results for ¢; = —4 kg/s* in
Fig. 9. It is seen from Fig. 9 that the relative error of the critical axial strain is limited to 5% when the vdW
interaction curvature coefficient ¢; varies from —1 kg/s2 to —10 kg/s2 for even small inner radii down to
0.35 nm. On the other hand, for the inner radii larger than 1.5 nm, the effects of different values of the
coefficient ¢; are negligible.

5. Conclusions

A new model is developed to study the curvature effects of the interlayer vdW forces on axial buckling
of DWNTs of inner radius down to 0.35 nm. The interlayer vdW pressure at a point is assumed to de-
pend linearly not only on the change of the interlayer spacing at that point but also the change of the
curvatures of the inner and outer tubes at that point. In particular, the curvature coefficient is estimated
based on some relevant data available in the literature. The axial buckling strain is calculated for various
radii, with detailed comparison to the results which neglect the difference of the two radii of the inner
and outer tubes or the curvature effects of the interlayer vdW forces. Our main results are summarized
as follows:

(1) The effect of the vdW interaction pressure prior to buckling under pure axial stress is small and can be
negligible whether the vdW interaction curvature coefficient ¢; is neglected or not.

(2) Neglecting the difference of the inner and outer radii alone leads to an over-estimate of the critical
axial buckling strain if the average radius of the inner and outer tubes is used as the representative
radius. However, the relative error is negligible (less than 1%) if the inner radius of DWNTs is larger
than 1.5 nm.

(3) The specific value of the curvature coefficient ¢; has a negligible influence on the critical buckling
strain when the inner radius is larger than 1.5 nm.

(4) Similar to the classical results of axially compressed buckling of elastic thin shells, the buckling modes
associated with the minimum axial strain are not determined uniquely for DWNTSs under pure axial
stress whether the vdW interaction curvature coefficient ¢; is neglected or not.

(5) The critical axial strain given by the simplified model without the curvature effects (¢; = 0) is lower
than that predicted by the present model with the curvature effects (¢; # 0). The curvature effects play
a significant role in axially compressed buckling problems of DWNTs of inner diameter around or
smaller than 1 nm.

Although the present results are limited to axially compressed buckling of DWNTs, similar results are
expected for the role of the curvature effects in other problems of MWNTs of smaller radii, such as radial
buckling of MWNTs of smaller innermost radius. In addition, the model for curvature dependence of
the interlayer vdW forces developed here could be used to study other short-wavelength deformation
of MWNTs, such as highly localized deformation under bending or large-deflection post-buckling of
MWNTs.
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